
From Moore’s Law to Amdahl’s Law: The Pursuit
of Computer Performance

Chakib Chraibi

School of Engineering and Technology,
 Miami Dade College, Miami, Florida, USA

Abstract-As the increasing reliance on information technology
and computer power, to make information systems more
efficient or advanced research more possible, has become so
pervasive, the underlying technology, based on Moore’s law
that made it possible, is coming to an end, at least in its
present model. This paper explores alternative computer
frameworks and architectures to increase the speed and
power of computing, namely the multicore and the many-core
models.

Keywords-Computer Performance, Parallel Architecture,
Parallel Programming, Moore’s Law, CUDA

INTRODUCTION
In the 1960s, Gordon Moore of Intel stated that the number
of transistors, which can be manufactured on a single
integrated-circuit die, will double every 18 months. This
prediction, known now as Moore’s law, has been validated
by four decades of empirical results as shown in Figure 1
[1]. The growth is expected to slow down by 2013, after
which density will only double every three years.
During this sustained period, software performance had
essentially relied on guaranteed hardware capacity growth
enshrined in Moore’s law. This reliance on hardware
density is predictably coming to an end.
The main current existing alternative is to use parallel
architectures. Multi-core processors, consisting on two or

more independent processors, are common in all types of
computing devices. The effect on computer performance
can only be harnessed by leveraging software algorithms
and their implementation. Although near linear speed-up
may be achieved in some cases such as embarrassingly
parallel problems, most cases are limited by the fraction of
the algorithm that can be parallelized as stated in Amdahl’s
law. This law describes the expected speed-up of
parallelization as constrained by the serial portion of the
program. In the case of parallelization, Amdahl's law states
that if P is the proportion of a program that can be made
parallel (i.e. benefit from parallelization), and (1 − P) is the
proportion that cannot be parallelized (remains serial), then
the maximum speedup that can be achieved by using N
processors is:

For software developers, the focus now should be in
developing software algorithms that would take an optimal
advantage of multi-core architectures. The future of
computer performance growth lies in the parallelization of
software. In this paper, we run several algorithms of
different complexities and discuss the advantage of parallel
models over serial models.

Figure 1. Moore’s Law for CPU Speed

Chakib Chraibi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4412-4416

www.ijcsit.com 4412

The goal of this study is to explore the two main
approaches for designing multiprocessor architectures. The
first trajectory is known as the multicore model. For
instance, the Intel® Core i7 microprocessor has four
processor cores, each implementing the fullx86 instruction
set and focuses on the execution speed of sequential
programs [2]. The other model is referred to as the many-
core model and focuses on the execution throughput of
parallel applications. An example is the NVIDIA®
GeForce® GTX 280 graphics processing unit (GPU) with
240 cores.

PARALLEL COMPUTING USING A MULTICORE MODEL
In this study, we will run algorithms in the serial and
parallel models and compare their performance with the
goal of transforming the way we seek increased computer
performance. In theory, serial algorithms have a slight
reduction of overhead compared to parallel algorithms,
because parallel algorithms must divide the execution
among processors as they proceed, whereas serial
algorithms do not. However, aside from that, parallel
algorithms have the advantage of being able to take
advantage of the parallelization of the workload.
In our experiments, we will use a quad-core machine and
“parallel-friendly” algorithms. Theoretically, the
maximum speedup is quadruple the amount of work as the
serial algorithm if there is no dependency between
computations. Now, since those multi-core machines are
affordable and accessible, software solutions should be
designed to fully exploit parallel hardware. Most
applications developed today were intended to run on a
single core and see no speed improvements when run on
multi-core machines. On the other hand, overexposed
parallelism can lead to slower performance by creating
unnecessary synchronization and race condition. A
systematic methodology should be developed to guide
programmers in designing parallel prone software
programs.
Recently, several programming environments have been
extended to provide parallel programming support. For
instance, Visual Studio 2010 and the .NET Framework 4
provide support for parallel programming across cores by
providing a new runtime, new class library types, and new
diagnostic tools [3, 4]. These features make it easier to do
parallel development so that efficient, fine-grained, and
scalable parallel code can be written without having to
work directly with threads or use specialized languages or
platforms such as OpenMP.
In what follows, we will contrast serial execution and
parallel execution on a multicore machine using matrix
multiplication algorithms. This algorithm is important

because it exhibits a central programming structure to
parallel programming, the parallel loop. The application is
run in the Visual Studio 2012 environment.

EXAMPLE: MATRIX MULTIPLICATION ALGORITHM
The following algorithm implements the matrix
multiplication operation. Matrix multiplication is a binary
operation that takes a pair of matrices, and produces
another matrix. The matrix product of two matrices can be
defined when the number of the columns of the first matrix
matches the number of the rows of the second matrix. The
product of an m×p matrix A with a p×n matrix B is an m×n
matrix denoted AB whose entries are where 1 ≤ i ≤ m is the
row index and 1 ≤ j ≤ n is the column index.

As we can notice from the formula, most operations may be
independently executed but then need to be synchronized to
complete the final addition of the different factors. These
operations are also repetitive and require a loop control
construct.
We chose this algorithm because it can be characterized as
embarrassingly parallel. In parallel computing, an
embarrassingly parallel algorithm is a program that requires
little effort to be modularized into parallel tasks because its
many operations may be performed in relative
independence, with few or no dependencies between these
parallel tasks. A program fitting this pattern offers the best
chance for efficient parallel execution, based on Amdahl’s
law.
Matrix multiplication has several applications, for instance,
in business applications and supply management. The
programs, used to test the serial and parallel
implementation models of matrix multiplication, were
written in Visual Basic. In the parallel algorithm, the loops
were written using the parallel construct now supported in
the .NET environment. In order to test performance
between the two algorithms, the algorithms were run on
increasing matrix sizes. The tests were performed on an
Intel Core 2 Quad, running in a 32-bit operating system
environment. This particular processor has four cores
within one die, and is clocked at 2.4 GHz. processors. All
tests were run on the same hardware, one after one another.
Because of uncontrolled external factors (i.e.. other
processes running on the system, all results should be
considered with an error factor of 0±0.1 second).
Results of our simulations are shown in Table 1 and Figure
2.

Table 1. Matrix Multiplication Serial vs. Parallel

Matrix Size Serial Time (sec.) Parallel Time (sec.) Gain/Loss (sec.) Improvement

100 0.035 0.019 0.016 46%
200 0.288 0.068 0.22 76%
300 0.983 0.231 0.752 77%
400 2.815 0.528 2.287 81%
500 6.184 1.063 5.121 83%
1000 51.718 7.577 44.141 85%

Chakib Chraibi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4412-4416

www.ijcsit.com 4413

Figure 2. Matrix Multiplication: Serial vs. Parallel Model

The results of our simulations show that computer
performance can be significantly improved on a regular
machine by transforming the program from a serial model
into a parallel model so it takes advantage of the parallel
hardware infrastructure, especially when operations are
repetitive as in matrix multiplication. While Moore’s law
provides a 58% improvement over two years, we were able
to get over 80% improvements for moderately large
matrices, in our example. In matrix multiplication, only a
tweaking of the loop construct is required. A significant
majority of the work in many applications and algorithms is
done through loop control constructs.

PARALLEL COMPUTING USING A MANY-CORE MODEL
Graphic Processing Units or GPUs have been increasingly
used to support applications in science and engineering that
require large amounts of computer power while staying
reasonably affordable. CUDA (Compute Unified Device
Architecture) is one the most popular and convenient
application programming interfaces used to harness the
power of GPUs by efficiently and relatively easily
launching multiple compute kernels or threads on the GPU.
CUDA, invented by NVIDIA, is a parallel computing
platform and programming model that draws its computer
power through the production and implementation of
GPUs, using programming languages such as C or C++.
The fast growing video industry has exerted a lot of
influence on the design of the GPU programming model
(Kirk 2010). Video game applications require the
capability of executing a massive number of floating point
calculations. The GPU-based model can sustain thousands
of threads. The design philosophy of the GPU
programming model is to build a large number of parallel
computing units that are small, simple, and power efficient.
The base hardware is heterogeneous combining two types
of processors: the CPU and the GPU. The experiment

shown below is run using CUDA. CUDA, which stands for
Compute Unified Device Architecture, is a parallel
computing platform and programming model created by
NVIDIA® and implemented by the graphics processing
units (GPUs) that they produce. CUDA allows us to
program both processors with one program. This model
permits to harness the power of GPUs in our programs
while the control is still initiated by the CPU. CUDA
supports many languages, but in our example, we will be
using the C language.

CUDA Program
Written in CUDA C

Programming

GPU
(Device)

CPU
(Host)

Memory Memory

CPU
code

GPU
code

CoProcessor

Figure 3. GPU Programming Model

Chakib Chraibi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4412-4416

www.ijcsit.com 4414

Figure 3 illustrates the GPU programming model. The
typical CUDA program will look like a regular program as
if it runs on a single thread, but when it is invoked, the
“CUDA” kernel will be executed through multiple threads.
The CPU allocates storage on the GPU and copies some
input data from the CPU to the GPU. Then, the CPU
launches the threads to be executed on the GPU. The
results are finally copied back from the GPU to the CPU.
Figure 4 shows the simulation results of the execution of
the matrix multiplication example executed with a
sequential C program vs. a CUDA C program.

Results of our simulations are shown in Table 2 and Figure
4. The results of our simulations show that in small size
computation, the CUDA performance suffers from the
operations required to set up the transfer between the CPU
and GPU. However, eventually, as the matrix size grows,
CUDA provides a significant improvement. We were able
to reach a 76% improvement ratio that surpasses the 58%
typically provided by Moore’s law.

Table 2. Matrix Multiplication Serial vs. Parallel

Matrix Size C Serial Time (sec.) CUDA C Parallel Time (sec.) Gain/Loss (sec.) Improvement

100 0.001 0.81 0.016 -800000%
200 0.03 0.84 0.22 -2700%
300 0.11 0.93 0.752 -745%
400 0.33 0.98 2.287 -197%
500 0.59 1.17 5.121 -98%

1000 7.7 1.85 44.141 76%

Figure 4. Matrix Multiplication: Serial vs. Parallel Model

CONCLUSION

Parallel programming is about optimizing the performance
of applications executing on multiple cores by maximizing
processor usage across all available cores. Microsoft
Visual Studio development system now provides a
development model that supports parallel programming
through the Parallel Patterns Library (PPL) and the
Asynchronous Agents Library. This simplifies
tremendously the job because sophisticated algorithms that
dynamically distribute computations on multicore
architectures.

Based on our multicore and many-core programming
models’ simulation results, parallel programming provides
clear improvement of computer performance. The
speedups realized in multi-core equipped machines are
directly correlated to the problem size. As the problem size
gets larger, parallel execution overcomes the cost of
splitting the code on two or more processors. This trend
should hold for larger multicore and speedups will be more
significant. The results of our simulation using a many
core architecture based on the CUDA programming model
comfort the power of parallel computing. However,
applications consist of sequential and parallel parts. Speed-

0

1

2

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800 900 1000

Ti
m
e
 in

 S
e
co
n
d
s

Matrix Size

Matrix Multiplication

seq C

cuda C

Chakib Chraibi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4412-4416

www.ijcsit.com 4415

up will depend on the parallel sub-structure that is suitable
for parallel execution, as stated in Amdahl’s law.
However, parallel programming is inherently more
complicated that sequential programming because
additional issues may arise such as synchronization,
deadlock, and load balancing. The ideal situation is when
program codes can be divided into threads that can be
completely implemented in parallel, that is, one thread per
core. This rarely happens because threads, during
execution, may need to access data or wait for the
execution of data, and thus synchronize with other threads.
All these operations delay the proper execution and slow
down the performance of the program.
High performance can only be achieved through proper,
correct, smart modularization and programming. This
should encourage software developers to learn more about
parallel computation and programming issues, and work on
patterns that can be automatically used to take full
advantage of multi-core processors architectures. Several
parallel programming patterns have been proposed to
enhance and automatize the decomposition of serial
programs into parallel programs. The focus should be on
performance analyzers at both the design and run-time
levels. These tools should be used to monitor the
performance and identify any gap in optimizing the use of
parallel execution. The adage “what the hardware gives,
the software takes away” is fading away.

REFERENCES
[1] Dongarra, J. P., et al. (2003) “Sourcebook of Parallel Computing”,

San Francisco, CA: Morgan Kaufmann.
[2] Kirk, D.B., and Hwu, W.W. (2010) “Programming Massively

Parallel Processors”, Burlington, MA: Elsevier.
[3] Campell, C., and Miller, A. (2011) “Parallel Programming with

Microsoft Visual C++”, Redmond, WA: Microsoft Press.
[4] Marshall, D. (2011) “Parallel Programming with Microsoft Visual

Studio 2010”, Redmond, WA: Microsoft Press.

AUTHOR

Dr. Chakib Chraibi is currently a faculty in the School of Engineering and
Information Technology at Miami Dade College in Miami, USA.
Previously, he was the Associate Dean in the College of Engineering and
Information Sciences at DeVry University and the Chair of the
Department of Mathematics and Computer Science at Barry University.
His research interests include real-time systems, enterprise computing,
software engineering, computer networking and security, and computer
performance.

Chakib Chraibi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4412-4416

www.ijcsit.com 4416

